Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 451, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605343

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the prevailing histological subtype of renal cell carcinoma and has unique metabolic reprogramming during its occurrence and development. Cell senescence is one of the newly identified tumor characteristics. However, there is a dearth of methodical and all-encompassing investigations regarding the correlation between the broad-ranging alterations in metabolic processes associated with aging and ccRCC. We utilized a range of analytical methodologies, such as protein‒protein interaction network analysis and least absolute shrinkage and selection operator (LASSO) regression analysis, to form and validate a risk score model known as the senescence-metabolism-related risk model (SeMRM). Our study demonstrated that SeMRM could more precisely predict the OS of ccRCC patients than the clinical prognostic markers in use. By utilizing two distinct datasets of ccRCC, ICGC-KIRC (the International Cancer Genome Consortium) and GSE29609, as well as a single-cell dataset (GSE156632) and real patient clinical information, and further confirmed the relationship between the senescence-metabolism-related risk score (SeMRS) and ccRCC patient progression. It is worth noting that patients who were classified into different subgroups based on the SeMRS exhibited notable variations in metabolic activity, immune microenvironment, immune cell type transformation, mutant landscape, and drug responsiveness. We also demonstrated that PTGER4, a key gene in SeMRM, regulated ccRCC cell proliferation, lipid levels and the cell cycle in vivo and in vitro. Together, the utilization of SeMRM has the potential to function as a dependable clinical characteristic to increase the accuracy of prognostic assessment for patients diagnosed with ccRCC, thereby facilitating the selection of suitable treatment strategies.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , 60645 , Senescência Celular/genética , Análise de Sequência de RNA , Microambiente Tumoral/genética , Receptores de Prostaglandina E Subtipo EP4
2.
J Transl Med ; 22(1): 55, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218866

RESUMO

Bladder cancer (BLCA) is the most frequent malignant tumor of the genitourinary system. Postoperative chemotherapy drug perfusion and chemotherapy are important means for the treatment of BLCA. However, once drug resistance occurs, BLCA develops rapidly after recurrence. BLCA cells rely on unique metabolic rewriting to maintain their growth and proliferation. However, the relationship between the metabolic pattern changes and drug resistance in BLCA is unclear. At present, this problem lacks systematic research. In our research, we identified and analyzed resistance- and metabolism-related differentially expressed genes (RM-DEGs) based on RNA sequencing of a gemcitabine-resistant BLCA cell line and metabolic-related genes (MRGs). Then, we established a drug resistance- and metabolism-related model (RM-RM) through regression analysis to predict the overall survival of BLCA. We also confirmed that RM-RM had a significant correlation with tumor metabolism, gene mutations, tumor microenvironment, and adverse drug reactions. Patients with a high drug resistance- and metabolism-related risk score (RM-RS) showed more active lipid synthesis than those with a low RM-RS. Further in vitro and in vivo studies were implemented using Fatty Acid Synthase (FASN), a representative gene, which promotes gemcitabine resistance, and its inhibitor (TVB-3166) that can reverse this resistance effect.


Assuntos
Gencitabina , Neoplasias da Bexiga Urinária , Humanos , 60645 , Sequência de Bases , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Análise de Sequência de RNA , Microambiente Tumoral , Ácido Graxo Sintase Tipo I/genética
3.
Cancer Res ; 83(23): 3920-3939, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729394

RESUMO

Fatty acid metabolism reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Increased lipid storage supports ccRCC progression, highlighting the importance of understanding the molecular mechanisms driving altered fatty acid synthesis in tumors. Here, we identified that malonyl-CoA decarboxylase (MLYCD), a key regulator of fatty acid anabolism, was downregulated in ccRCC, and low expression correlated with poor prognosis in patients. Restoring MLYCD expression in ccRCC cells decreased the content of malonyl CoA, which blocked de novo fatty acid synthesis and promoted fatty acid translocation into mitochondria for oxidation. Inhibition of lipid droplet accumulation induced by MLYCD-mediated fatty acid oxidation disrupted endoplasmic reticulum and mitochondrial homeostasis, increased reactive oxygen species levels, and induced ferroptosis. Moreover, overexpressing MLYCD reduced tumor growth and reversed resistance to sunitinib in vitro and in vivo. Mechanistically, HIF2α inhibited MLYCD translation by upregulating expression of eIF4G3 microexons. Together, this study demonstrates that fatty acid catabolism mediated by MLYCD disrupts lipid homeostasis to repress ccRCC progression. Activating MLYCD-mediated fatty acid metabolism could be a promising therapeutic strategy for treating ccRCC. SIGNIFICANCE: MLYCD deficiency facilitates fatty acid synthesis and lipid droplet accumulation to drive progression of renal cell carcinoma, indicating inducing MYLCD as a potential approach to reprogram fatty acid metabolism in kidney cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Metabolismo dos Lipídeos , Ácidos Graxos/metabolismo
4.
Front Immunol ; 13: 837991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359973

RESUMO

Background: Prostate cancer (PCa) is the most common malignant tumor in men. Although clinical treatments of PCa have made great progress in recent decades, once tolerance to treatments occurs, the disease progresses rapidly after recurrence. PCa exhibits a unique metabolic rewriting that changes from initial neoplasia to advanced neoplasia. However, systematic and comprehensive studies on the relationship of changes in the metabolic landscape of PCa with tumor recurrence and treatment response are lacking. We aimed to construct a metabolism-related gene landscape that predicts PCa recurrence and treatment response. Methods: In the present study, we used differentially expressed gene analysis, protein-protein interaction (PPI) networks, univariate and multivariate Cox regression, and least absolute shrinkage and selection operator (LASSO) regression to construct and verify a metabolism-related risk model (MRM) to predict the disease-free survival (DFS) and response to treatment for PCa patients. Results: The MRM predicted patient survival more accurately than the current clinical prognostic indicators. By using two independent PCa datasets (International Cancer Genome Consortium (ICGC) PCa and Taylor) and actual patients to test the model, we also confirmed that the metabolism-related risk score (MRS) was strongly related to PCa progression. Notably, patients in different MRS subgroups had significant differences in metabolic activity, mutant landscape, immune microenvironment, and drug sensitivity. Patients in the high-MRS group were more sensitive to immunotherapy and endocrine therapy, while patients in the low-MRS group were more sensitive to chemotherapy. Conclusions: We developed an MRM, which might act as a clinical feature to more accurately assess prognosis and guide the selection of appropriate treatment for PCa patients. It is promising for further application in clinical practice.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata , Humanos , Masculino , Recidiva Local de Neoplasia/genética , Prognóstico , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...